Ref No:

Sri Krishna Institute of Technology Bengaluru-560090

COURSE PLAN

Academic Year - 2019-20

Program:	B E – Electrical & Electronics Engineering
Semester: 5	
Course Code:	17EEL57
Course Title:	8051 MICROCONTROLLER
Credit / L-T-P:	2 / 0-0-2
Total Contact Hours:	36
Course Plan Author:	Syeda N

Academic Evaluation and Monitoring Cell

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bengaluru – 560090, Karnataka, India Phone / Fax :080-23721477/28392221/23721315 Web: www.skit.org, e-mail:skitprinci1@gmail.com

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4
1. Laboratory Overview	4
2. Laboratory Content	
3. Laboratory Material	5
4. Laboratory Prerequisites:	
5. Content for Placement, Profession, HE and GATE	5
B. Laboratory Instructions	6
1. General Instructions	
2. Laboratory Specific Instructions	6
C. OBE PARAMETERS	6
1. Laboratory Outcomes	6
2. Laboratory Applications	7
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Experiments	-
6. Experiments Beyond Syllabus	
D. COURSE ASSESSMENT	
1. Laboratory Coverage	
2. Continuous Internal Assessment (CIA)	
E. EXPERIMENTS	11
Experiment 01 : Structure of C program	
Experiment 02 : Keywords and identifiers	
Experiment 03 :	
Experiment 04 :	
F. Content to Experiment Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	15

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B.E	Program:	EE
Year / Semester :	3/5	Academic Year:	2019
Course Title:	8051 MICROCONTROLLER	Course Code:	17EEL57
Credit / L-T-P:	2 / 0-0-2	SEE Duration:	180 Minutes
Total Contact Hours:	36Hrs	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	-
Lab. Plan Author:	SYEDA N	Sign	Dt :
Checked By:		Sign	Dt :

Note : Remove "Table of Content" before including in CP Book Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

2. Laboratory Content

Expt.	Title of the Experiments	Lab	Concept	Blooms
		Hours		Level
1	Data transfer – Program for block data movement, sorting,	3	Data	L4
	exchanging, finding largest element in an array.		Transfer	Analyze
2	Arithmetic instructions: Addition, subtraction, multiplication and	3	Arithmatic	L4
	division. Square and cube operations for 16 bit numbers.		Operations	
3	Counters	3	Counters	L4
4	Boolean and logical instructions (bit manipulation).	3	Bit	L4
			Manipulatio	
			n Operatins	
5	Conditional call and return instructions.	3	Subroutine	L4
6	Code conversion programs – BCD to ASCII, ASCII to BCD, ASCII to	3	Code	L4
	decimal, Decimal to ASCII, Hexa decimal to and Decimal to hexa.		Conversion	
7	Programs to generate delay, Programs using serial port and on-	3	Timer &	L4
	chip timer/counters.		Serial	
			Communica	
			tion	
8	Stepper motor interface.	3	Peripheral	L4
			Interface	
9	DC motor interface for direction and speed control using PWM.	3	Peripheral	L4
			Interface	
10	Alphanumerical LCD panel interface.	3	Peripheral	L4
			Interface	
11	Generate different waveforms: Sine, Square, Triangular, Ramp	3	Peripheral	L4
	using DAC interface.		Interface	
12	External ADC and Temperature control interface.	3	Peripheral	L4
			Interface	
13	Elevator interface.	3	Peripheral	L4
			Interface	

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in book	Availability
•	Taut backs (Title, Authons, Edition, Dublisher, Veer,)		
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
2,6,7,9,	The 8051 Microcontroller and Embedded Systems Using Assembly and	1-12	In Lib / In Dept
10	C 8051 Muhammad Ali Mazadi Pearson 2 nd Edition, 2008.		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
12	Linear Integrated Circuits; Analysis,Design and Applications,B.	8	In Lib
	Somanthan Nair, Wiley India,2013		
8,	Linear Integrated Circuits S. Salivahanan, et al McGraw Hill 2 nd	7	In Lib
	Edition,2014.		
3	Operational Amplifiers and Linear Integrated Circuits K. Lal Kishore	4	In lib
	Pearson 1 st Edition, 2012		
С	Concept Videos or Simulation for Understanding	-	-
C1	https://www.electronicshub.org/8051-microcontroller-architecture	1	Internet
C2	http://www.zseries.in/embedded	2	Internet
	%20lab/8051%20microcontroller/memory%20mapping.php#.XbaHV-		
	YzblU		
C3	https://www.tutorialspoint.com/addressing-modes-of-8051	3	Internet
C4	https://www.youtube.com/watch?v=9VY6d6oJr7s	4	Internet
C5	https://www.youtube.com/watch?v=t9NrRkdGaME	5	Internet
C6	https://www.electronicwings.com/8051/8051-timers	6	Internet
C7	https://www.gadgetronicx.com/serial-communication-in-8051-	7	Internet
	microcontroller/		

C8	https://www.elprocus.com/types-of-interrupts-in-8051-	8	Internet
	microcontroller-and-interrupt-programming		luck c urc c k
C9	https://www.academia.edu/6174081/8051_Interfacing_and_Applications _Microcontroller	9	Internet
C10	<u>https://circuitdigest.com/microcontroller-projects/stepper-motor-</u>	10	Internet
010	interfacing-with-8051	10	internet
C011	https://circuitdigest.com/microcontroller-projects/stepper-motor-	11	Internet
	interfacing-with-8051		
C012	https://circuitdigest.com/microcontroller-projects/stepper-motor-	12	Internet
	interfacing-with-8051		
C013	https://circuitdigest.com/microcontroller-projects/stepper-motor-	13	Internet
	interfacing-with-8051		
D		-	-
CO1-			
CO12			
-			
E		-	-
C01 C02			
C02			
c03			
co4			
co6			
co7			
co8			
co9			
C010			
CO11			
C012			
F	Others (Web, Video, Simulation, Notes etc.)		
	Nptel online video lecture	Www.on	
			video lecture
		ses.nptel	
		.ac.in	

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Ī	Expt.	Lab.	Lab. Name	Topic / Description	Sem	Remarks	Blooms
		Code					Level
	1	17ELN24	Basic	Semiconductor devices and BJT/	2		L2
				Fundamentals and characteristics			Understa
				of diode , transistor characteristics			nd

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Expt. Topic / Description		Remarks	Blooms
				Level
1	NPTEL Videos /Experiment: Op-amp	Placement/	Video lecturing by IISc professor	Analyze
	based ECG Signal Acquisition,	GATE	on "Electronics Modules for	L4
	Conditioning and Processing for		Industrial Applications" and	
	Computation of BPM		assignment questions.	
2	NPTEL Videos /Experiment: Op-amp	Placement/	Video lecturing by IISc professor	Analyze

	based ECG Signal Acquisition, Conditioning and Processing for Computation of BPM		on "Electronics Modules for Industrial Applications" and assignment questions.	L4
	NPTEL Videos /Experiment: Op-amp based ECG Signal Acquisition, Conditioning and Processing for Computation of BPM	GATE	Video lecturing by IISc professor on "Electronics Modules for Industrial Applications" and assignment questions.	L4
	NPTEL Videos /Experiment: Op-amp based ECG Signal Acquisition, Conditioning and Processing for Computation of BPM	GATE	on "Electronics Modules for Industrial Applications" and assignment questions.	L4
	NPTEL Videos /Experiment: Op-amp based ECG Signal Acquisition, Conditioning and Processing for Computation of BPM	GATE	on "Electronics Modules for Industrial Applications" and assignment questions.	L4
	NPTEL Videos /Experiment: Op-amp based ECG Signal Acquisition, Conditioning and Processing for Computation of BPM	GATE	on "Electronics Modules for Industrial Applications" and assignment questions.	L4
7	NPTEL Videos /Introdutction to Gas Sensors and Experiment on Signalconditioning Circuit for Operating Heater Voltage of MQ-7 Gas Sensor	GATE	Video lecturing by IISc professor on "Electronics Modules for Industrial Applications" and assignment questions.	Analyze L4
	NPTEL Videos /Introdutction to Gas Sensors and Experiment on Signalconditioning Circuit for Operating Heater Voltage of MQ-7 Gas Sensor	GATE	on "Electronics Modules for Industrial Applications" and assignment questions.	L4
	NPTEL Videos /Introdutction to Gas Sensors and Experiment on Signalconditioning Circuit for Operating Heater Voltage of MQ-7 Gas Sensor	GATE	on "Electronics Modules for Industrial Applications" and assignment questions.	L4
	NPTEL Videos /Introdutction to Gas Sensors and Experiment on Signalconditioning Circuit for Operating Heater Voltage of MQ-7 Gas Sensor	GATE	on "Electronics Modules for Industrial Applications" and assignment questions.	L4
	NPTEL Videos /Introdutction to Gas Sensors and Experiment on Signalconditioning Circuit for Operating Heater Voltage of MQ-7 Gas Sensor	GATE	on "Electronics Modules for Industrial Applications" and assignment questions.	L4
12	NPTEL Videos /Introdutction to Gas Sensors and Experiment on Signalconditioning Circuit for Operating Heater Voltage of MQ-7 Gas Sensor		Video lecturing by IISc professor on "Electronics Modules for Industrial Applications" and assignment questions.	Analyze L4

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
	After completion of the program, certification of the concerned staff in- charge in the observation book is necessary.	
	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so	

	that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
9	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Start computer	
2	Open the Keil software	
3	Create new project	
4	Select new file.	
5	Write the program	
6	Save the program with .am or .c extension.	
7	Assemble/ Compile the program F9	
8	Execute the program F10	

C. OBE PARAMETERS

1. Laboratory Outcomes

Evp	Lab Code #	COs / Experiment Outcome	Teach.	Concept	Instr	Assessment	Blooms'
t.	Lab Coue #	COS7 Experiment Outcome	Hours		Method	Method	Level
		At the end of the experiment, the	-		-	-	LCVCL
		student should be able to					
1	17EEL57.1	Develop the program for moving data within memory locations in assembly language		Data Transfer	Lecture and executio n	Test and Viva	L4
2		Develop the program for additin,substraction,multiplication,di vision, square and root in assembly language		Arithmatic Operations	Lecture and executio n	Test and Viva	L4
3	17EEL57.3	Develop the program for UP/DOWN Counters in assembly language	07	Counters	Lecture and executio n	Test and Viva	L4
4		Develop the program for logical and boolean operations in assembly language		Bit Manipulation Operatins	Lecture and executio n	Test and Viva	L4
5		Develop the program to call subroutine within main routine in assembly language	-	Subroutine	Lecture and executio n	Test and Viva	L4
6		Develop the program for BCD to ASCII, ASCII to BCD, ASCII to decimal, Decimal to ASCII, Hexa decimal to and Decimal to hexa in assembly language		Code Conversion	Lecture and executio n	Test and Viva	L4
7		Develop the program to generate time delay and serial communication using assembly language.		Timer & Serial Communicat ion	n		L4
8	17EEL57.8	Develop the program to interface	03	Peripheral	Demons	Test and	L4

		stepper motor with 8051 using		Interface	trate	Viva	
		hardware boards.					
9	17EEL57.9	Develop the program to interface	03	Peripheral	Demons	Test and	L4
		DC motor with 8051 using hardware		Interface	trate	Viva	
		boards.					
10	17EEL57.10	Develop the C program to interface	03	Peripheral	Demons	Test and	L4
		LCD PANEL with 8051 using	_	Interface	trate	Viva	
		hardware boards.					
11	17EEL57.11	Develop the C program to interface	03	Peripheral	Demons	Test and	L4
		DAC with 8051 to generate sine,	_	Interface	trate	Viva	-
		square, triangular and ramp					
		waveforms using hardware boards.					
12	17EEL57.12	Develop the C program to interface	03	Peripheral	Demons	Test and	L4
		ADC with 8051 for temperature	- 0	Interface	trate	Viva	-7
		control using hardware board.			1. 400		
12	17EEL 67 13	Develop the C program to interface	03	Peripheral	Demons	Test and	14
3			03				L4
		elevator with 8051 using hardware		Interface	trate	Viva	
		board.					

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	Data move between processor and peripheral devices.	CO1	L4
2	Calculators	CO2	L4
3	Generate PWM signal to control speed of motor or to count extrenal events .	CO3	L4
4	Bit masking. Code conversion(logic & rotate instruction) & serial devices.	CO4	L4
5	All Programming languages.	CO5	L4
6	Keyboard, Printers and monitors (BCD to ASCII).	CO6	L4
7	Use for generating precise time delays in many electronic equipment such as	CO7	L4
	CPU, washing Machine and microwave oven. Long distance communication.		
8	Automation systems, image scanners, computer printers and disc drivers.	CO8	L4
9	Elevators, air compressor, vaccum cleaner and hair driver etc	CO9	L4
10	Bank, Bus, digital watch, TV etc	CO10	L4
11	ECG Machines	CO11	L4
12	Computer, mobile and in all data acquisition systems.	CO12	L4
13	In all multistorage building	CO13	L4
Mata	V/rite 1 or 2 applications por CO		

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt	Мар	ping	Mapping	Justification for each CO-PO pair	Lev
1.1			Level		el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	3	knowledge of features and internal architecture of 8051 microcontroller is required in developing a code in assembly langauge	L1
	CO1	PO2	3	Analysis of code requires knowledge of features and internal architecture of 8051 microcontroller	L3
	CO1	PO3	3	knowledge of memory interface is required in developing an hardware application	L5
	CO2	PO5	3	Analysis of problem in an hardware application may require knowledge of memory interface	L5
2	CO2	PO1	3	Devoloping an hardware application such as SOC requires knowledge of memory interface	L5
	CO2	PO2	3	knowledge of syntax rules of 8051 microcontroller is required in developing a code in assembly langauge	L5
	CO2	PO3	3	Analysis of problem in code requires knowledge of syntax rules of 8051	L5

Copyright ©2017. cAAS. All rights reserved.

				microcontroller	
	CO2	PO5	3	Developing a assembly code needs 8051 syntax rules	L5
3	CO2	PO1	3	knowledge of 8051 instruction set is required in writing assembly level programs	L5
	CO2	PO2	3	Analysis of assembly level program requires 8051 instruction set	L5
	CO3		3	knowledge of time delay,input/output operations, input/output bit manipulation , logic and arithmetic operations, data conversion and data serialization using C language is required in developing programs	L5
	CO3	PO5	3	Analysis of C programs requires knowledge of time delay,input/output operations, input/output bit manipulation , logic and arithmetic operations, data conversion and data serialization	L5
4	CO3	PO1	3	Developing a program may requires knowledge of time delay,input/output operations, input/output bit manipulation , logic and arithmetic operations, data conversion and data serialization.	L5
	CO4	PO2	3	The knowledge of timer/counters in time delay generation code of electronic appliances such as oven, washing machine etc.	L5
	CO4	PO3	3	Analysis of timer based applications requires knowledge of Timers/counters	L5
	CO4	PO5	3	Developing time delay code using Timer-0/1 is part of timer based applications.	L5
5	CO5	PO1	3	serial data communication programming is required in establishing the serial communication between 8051 micro controller and peripheral devices	L5
	CO5	PO2	3		L5
	CO5	PO3	3	Analysis of serial communication between 8051 micro controller and peripheral devices requires knowledge of serial data communication programming.	L5
6	CO6	PO5	3	Developing serial communication code is part of establishing the serial communication between 8051 micro controller and peripheral devices.	L5
	CO6	PO1	3	Interrupts programming is required in multitasking applications.	L5
	CO6	PO2	3	Analysis of multitasking in an application requires knowledge of interrupt programming	
	CO6	PO3	3	Developing interrupt service routine for different interrupts in multitasking application	L5
7	CO7	PO5	3	Developing programs which do the LCD, Keyboard, ADC , DAC chip and sensor interface with 8051 is required in applications such as data acquisition system, waveform generator and so on	L5
	CO8		3	Analysis of problem in applications requires knowledge of peripheral interface programming	L5
	CO9		3	Developing peripheral interface programs is part of building an application	L5
	CO10		3	Developing programs which do the DC motor, stepper motor and 8255 interface with 8051 is required in applications such as automatic door opening and closing, cd driver movement , arm position of robots and automatic guided vehicles and so on	L5
8	CO11		3	Analysis of problem in applications requires knowledge of peripheral interface programming	L5
	CO12	P05	3	Developing peripheral interface programs is part of building an application	L5

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes					Ρ	rog	ram	ιΟι	utco	ome	es					-
Expt.	CO.#		PO	PO	PO	PO	PO	PO	PO	PO								Lev
		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1		Develop the program for moving		3	3								3					L4
		data within memory locations in																
		assembly language																

LABORATORY PLAN - CAY 2019-20

2		Develop the program for additin,substraction,multiplicatio n,division, square and root in assembly language		3	3					3			L4
3		Develop the program for UP/DOWN Counters in assembly language		3	3					3			L4
4	17EEL57.4	Develop the program for logical and boolean operations in assembly language	3	3	3					3			L3
5	17EEL57.5	Develop the program to call subroutine within main routine in assembly language	3	3						3			L4
6	17EEL57.6	Develop the program for BCD to ASCII, ASCII to BCD, ASCII to decimal, Decimal to ASCII, Hexa decimal to and Decimal to hexa in assembly language	3	3	3					3			L4
7	17EEL57.7	Develop the program to generate time delay and serial communication using assembly language.		3	3					3			L4
8	17EEL57.8	interface stepper motor with 8051 using hardware boards.		3	3					3			L4
9	17EEL57.9	Develop the program to interface DC motor with 8051 using hardware boards.	3	З	3					3			L3
10	17EEL57.10	Develop the C program to interface LCD PANEL with 8051 using hardware boards.		S						3			L4
		Develop the C program to interface DAC with 8051 to generate sine, square, triangular and ramp waveforms using hardware boards.		3	3					3			L4
		Develop the C program to interface ADC with 8051 for temperature control using hardware board.		3	3					3			L4
-	17EEL57.13	Develop the C program to interfac	cee	elev	/atc	or with	805	1 usir	ig harc	lwar	e board	d	

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

- opics		(IIOIII / 1.4/), but 000	criticat for the course	10 44410551 05 4114	1 0 0 0.
Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Experiment: Op-amp	Video Session	14 th Feb 2019	Dr Hardik Pandey,	3
	based ECG Signal			IISc Professor	
	Acquisition,				
	Conditioning and				
	Processing for				
	Computation of BPM				

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachi		No	o. of qu	lestior	n in Exa	am		CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Data Transfer	03	1	-	-	-	-	-	1	CO1	L4
2	Arithmatic Instructions	03	1	-	-	-	-	-	1	CO2	L4
3	Counters	03	1	-	-	-	-	-	1	CO3	L4
4	Logical Instructions	03	1	-	-	-	-	-	1	CO4	L4
5	Subroutines	03	1	-	-	-	-	-	1	CO5	L4
6	Code Conversion	03	1	-	-	-	-	-	1	CO6	L4
7	Timers and Serial Communication	03	1	-	-	-	-	-	1	CO7	L4
8	Stepper Motor Interface	03	-	1	-	-	-	-	1	CO8	L4
9	DC Motor Interface	03	-	1	-	-	-	-	1	CO9	L4
10	LCD Interface	03	-	1	-	-	-	-	1	CO10	L4
11	DAC Interface	03	-	1	-	-	-	-	1	CO11	L4
12	ADC Interface	03	-	1	-	-	-	-	1	CO12	L4
13	Elevator Interface	03	-	1	-	-	-	-	1	CO13	L4
-	Total	60	7	8	5	5	5	5	60	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	CO2, CO5, CO6, CO7	L4, L3, L4,L4
CIA Exam – 2	30	CO1, CO3, CO4,CO8	L4, L4, L3,L4
CIA Exam – 3	30	CO9, CO10, CO11,CO12	L4, L3, L4 ,L4
Assignment - 1	10	CO2, CO5, CO6, CO7	L4, L3, L4,L4
Assignment - 2	10	CO1, CO3, CO4,CO8	L4, L4, L3,L4
Assignment - 3	10	CO9, CO10, CO11,CO12	L4, L3, L4 ,L4
Seminar - 1			
Seminar - 2			
Seminar - 3			
Other Activities – define – Slip test			
Final CIA Marks	40	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	25 Marks
4	Internal Assessment	40 Marks
5	SEE	60 Marks
-	Total	100 Marks

D. EXPERIMENTS

Experiment 01 : Data Transfer

-	Experiment No.:	1	Marks	10	Date Planned		Date Conducted
1	Title	Data Tr					· ·
2	Course Outcomes			ogram for m	ioving data \	vithin memo	ory locations in assembly
	• •	langua					
	Aim Matavial			a transfer ins	tructions.		
	Material / Equipment Required	Compl	iter ,kiel s	sontware			
	Theory, Formula,						
-	Principle, Concept						
	Procedure, Program,	•	step 1: s	start			
	Activity, Algorithm,		•	write prograr	nming		
	Pseudo Code	•	step 3:	save the prog	gram		
		•	•	assemble			
		•	•		orrect the er	rors	
		•	step 6:r				
		•	step 7:s	top			
		ORG MOV MOV AGAIN: MOV INC INC DJNZ END 2.ALP t using X ORG MOV MOV MOV	0000H R3,#04l R0,#30 R1,#40H MOV A @R1,A R0 R1 R3,AGA o exchar (CH) 0000H	H H A,@Ro IN nge n-bytes H H H H			cation y without overlap. x and location y.(without
		MOV	60H,@l				
		MOV	@R0,60				
		MOV	@R1,A				
		INC INC	Ro R1				
		DJNZ	R3,AGA	IN			
		END	2.				
		3. ALP using X ORG MOV			of data betw	een the loca	tion x and location y(with
		MOV	Ro,#30				
		MOV AGAIN:	R1,#40				
		AGAIN		A,@R0			

		END		an array of r	numbers		
		MOV R2,# MOV R2,# MOV RPT: MOV INC MOV SJM NEXT: JC XCH DEC MOV NCHNGE: END	G 0000H 03H / R0,#40H A,@R0 R0 / 50H,@R0 E A,50H,NE P NCHNGE NCHNGE A,@R0 R0 / @R0,50H INC F	EXT			
		5.ALP to sort ORG MOV LOOP2:N MOV LOOP1:N INC MOV CJNE SJMP NEXT: JO MOV DEC MOV INC NCHNGE DJNZ END	R0,#40H AOV A,@R 50H,@R0 A, 50H, N NCHNGE C @R0,A R0 @R0,50H R0	04H D EXT NCHNG	-	ubble sort.	
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph						
8	Observation Table, Look-up Table, Output	INPUT OUTPUT	30H: 93 40H: 93	48 96 48 96	50 50		
		2. INPUT	30H: 40H:	52 22	83 96	92 98	21 16

LABORATORY PLAN - CAY 2019-20

	1											_
		OUTPUT	30H:		22		ç	96	98		16	
			40H:		52		8	33	92		21	
		4		ľ								_
		INPUT	40H:		0			4	8		5	
		OUTPUT	40H:		0			4	5		8	
		5								·		
		INPUT	40H:	3		5		4		5	8	
		OUTPUT	40H:	3		4		5		5	8	
					1				I			
9	Sample Calculations											
10	Graphs, Outputs											
11	Results & Analysis											
	Application Areas	Data move b	etween pi	rocesso	or an	d peri	phera	l device	S.			
	Remarks											
14	Faculty Signature with Date											

Experiment 02 :Arithmatic Instructions.

-	Experiment No.:	2	Marks	10	Date Planned		Date Conducted	
1	Title	Arith	netic Instruc	tions.	Flaimed		conducted	
2	Course Outcomes	root i	n assembly l	anguage	tin,substractio	on,multiplica	ation, division,	, square and
3	Aim	Exerc	cise on arithn	natic instruct	ions.			
4	Material / Equipment Required	Com	outer ,kiel so	ftware				
5	Theory, Formula, Principle, Concept							
6	Procedure, Program, Activity, Algorithm, Pseudo Code	2. ALL 0 0 0 0 0 0 0 0 0 0 0 0 0	RG 0000H DV R0,#00H DV A,40H DD A,42H DV 52H,A DV 52H,A DV A,41H DDC C R0 ARRY:MOV	4,43H 51H,A				

	SUBB MOV 52H,4 MOV A,41F SUBB MOV 51H,4 JNC NCA INC RO NCARRY:MC END 3.ALP to mult ORG 0000 MOV A,40 MOV B,41F MUL AB MOV 51H,7 MOV 50H,E END 4. ALP to divic ORG 000 MOV A,40 MOV B,41F DIV AB MOV 51H,7 MOV 50H,E END	A,43H A,RRY DV 50H DV 50H H H H A 3 de two 8 bit nu oH H H A 3 square of a 8	numbers. umbers.				
	MOV A,40 MOV B,40 MUL AB MOV 51H,7 MOV 50H,E END	н н 4					
Block, Circuit, Model Diagram,		40H:	Do	C7	E2	D1	
Reaction Equation Expected Graph	OUTPUT	50H:	01	99	B2		
	2 INPUT OUTPUT 3 INPUT	40H: 50H: 40H	4E 01 96	73 C5 25	F2 5C	AD	
	OUTPUT	50H	15	AE			
	4 INPUT OUTPUT	40H 50H	32 00	05 0A			
	INPUT	40H	oF				
	OUTPUT	50H	00	E1			

	Observation Table, Look-up Table, Output	
	Sample Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Calculators
13	Remarks	
	Faculty Signature with Date	

Experiment 03 : Counters

-	Experiment No.:	3	Marks	10	Date Planned		Date Conducted	
1	Title	Count	ers	I		1	I	
2	Course Outcomes					ters in assen	nbly language	
	Aim			INC instruct	ions			
	Equipment Required		outer ,kiel so					
5	Theory, Formula, Principle, Concept				orogramming programming			
6	Procedure, Program, Activity, Algorithm, Pseudo Code	ORG MOV LOOP INC CJNE	000 A,#0 ACALL A, #0 1:ACALL A	оН	DOWN coun	ter.		
		DECR DECR		R2,#0FFH R3,#0FFH R3,HERE				
		ORG MOV LOOP ADD DA A CJNE	0000 A,#0 ACALL A,#01 A ,#01 A ,#01 A ,#02 A , #00 A , #00	OH DELAY IH 99H, LOOP DELAY	nter.			
		DELA	Y :MOV	R1,#0FFH				

		DECR1:MOV R2,#0FFH DECR: MOV R3,#0FFH HERE: DJNZ R3,HERE DJNZ R2,DECR DJNZ R1,DECR1 RET
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table,	OUTPUT:
	Look-up Table,	1. A: 00HFFHFFH00H //STACK WINDOW
	Output	2. A: 00
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Generate PWM signal to control speed of motor or to count extrenal events
13	Remarks	
14	Faculty Signature with Date	

Experiment 04 :Logical Instructions

.....

-	Experiment No.:	4	Marks	10	Date Planned		Date Conducted	
1	Title	Logic	al Instruction	าร	rtannea		conducted	
2	Course Outcomes	Deve	lop the prog	ram for logic	al and boole	an operation	s in assembl	y language
3	Aim	Exerc	ise on logica	al instruction:	S.	· · ·		
4	Material /	Comp	outer ,kiel so	ftware				
	Equipment							
	Required Theory, Formula) operation i	s used to DE	SET the bits,	OD oporatio	n is used to	SET the hite
5	Principle, Concept						in is used to	SET THE DILS,
6	Procedure,						es of data	stored from
	Program, Activity,				ing operation			
	Algorithm, Pseudo			nibble of x w	rith upper nib	ble of x+1.		
	Code	b. R	ESULT of a i	s XOR with x	+2			
		ORG	0000					
		MOV ANL	A,40l A,#0					
		MOV						
		MOV	0 . ,					
		SWA	<i>i</i> 1					
		ANL	A,#0	FH				
		ORL	A,50ł	4				
		XRL	A,42H					
		MOV	51H,A	4				
		END						
					ng operations			
			SSING BITS		the bits 2 and	a 3, COMPLE	MENT the DI	ts 6 and 7.
		AUCE	3311VG DI 15.					
				ORG	0000H			

1	1					
		SETB SETB CLR CLR CPL CPL CPL	A,40H 0E0H 0E1H 0E2H 0E3H 0E6H 0E7H 50H,A			
	ACCESSING BY	TE:				
		XRL MOV END	0000H A,40H A,#03H A,#0F3H A,#0C0H 50H,A			
			nd 0's in a given l	oyte of data.		
	MOV R2, MOV R3, MOV R4, CLR C MOV A,4 RPT: RLC A JC NI INC SJMP SJMP NE NEXT: INC MOV 501 MOV 511 END 4.ALP to check	EXT R2 XT2 R4,RPT H,R2 H,R3	en byte is odd c 1 50H.	or even , if it is a	an even numb	əər
	MOV A, 2 RRC A JC NI	00H 40H EXT H,#00H 50H,#0EEH				
Block, Circuit, Model Diagram, Reaction Equation, Expected Graph						
Observation Table, Look-up Table,		40H	25	1B	ΕΛ	
Output	OUTPUT	51H	25 51		54	
			J-			
	2.					

LABORATORY PLAN - CAY 2019-20

r					
		INPUT	40H	54	1
		OUTPUT	50H	93	3
		3.			
		INPUT	40H	88	3
		OUTPUT	50H	06	02
		4.			
		INPUT	40H	84	1
		OUTPUT	50H	00)
9	Sample Calculations				
10	Graphs, Outputs				
11	Results & Analysis				
12	Application Areas	Bit masking. Code conversi	ion(logic & rotate instructic	on) & serial de	evices
13	Remarks				
14	Faculty Signature with Date				

Experiment 05 : Subroutines

......

-	Experiment No.:	5	Marks	10	Date Planned	Date Conducted			
1	Title	Subro	outines						
2	Course Outcomes		velop the program to call subroutine within main routine in assembly guage						
3	Aim	Exerc	ercise on CALL and RET instructions.						
	Material / Equipment Required	Comp	outer ,kiel so	ftware					
	Theory, Formula, Principle, Concept	digits the gi 2. ASCII	Seperation iven byte,the For each dig	Logic: AND en AND with git ASCII Con h Logic: If th	the given by 0Fh to get th version, call	te 2 digits into two individual single /te with oFH to get lower digit. Swap le upper digit. the subroutine ASCII. ess then 0Ah, add 30h, If digit is			
	Program, Activity, Algorithm, Pseudo	ORG MOV ANL	ACALL ASCII MOV MOV A.501 MOV A.501 SWAP ANL ACALL MOV SJMP I: CJNE SJMP I: CJNE SJMP I: CJNE SJMP I: CJNE SJMP I: CJNE SJMP I: CJNE SJMP	60H,A A A,#0FH ASCII 61H,A \$ A, #0A NEXT2 NEXT2 A,#37H	ΑΗ, NEXT 1				
		NEXT	1:ADD	A,#30H	0				

		RET				
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph					
8	Observation Table,				1	
	Look-up Table,	INPUT	50H	FE		
	Output	OUTPUT	60H	45	46	
9	Sample					
	Calculations					
10	Graphs, Outputs					
11	Results & Analysis					
12	Application Areas	All Programming languag	ges			
13	Remarks					
14	Faculty Signature with Date					

Experiment 06 : Code Conversion

-	Experiment No.:	6	Marks	10	Date Planned		Date Conducted			
1	Title	Code	Code Conversion							
2	Course Outcomes		Develop the program for BCD to ASCII, ASCII to BCD, ASCII to decimal, Decimal of ASCII, Hexa decimal to and Decimal to hexa in assembly language .							
3	Aim	Exerc	cise on code	conversion.						
4	Equipment Required		Computer ,kiel software							
5	Theory, Formula, Principle, Concept	LOGI 100's	4: C:3:Divide the position digi	0-39 1-46 e given numl t, divide the	per by 100d(f remainder by		ent of the division is tient of second division n digit.			
	Program, Activity,	If AS If AS value	CII value is le CII value is ORG 0000 MOV A,501 CJNE SJMP SUBB SJMP SUBB RESLT :MO SJMP	ess than 40h greater than 0H H A, #40H, FINAL NEXT: JC A,#37H RESLT NEXT1: CLR A,#30H DV 60H,A \$ to BCD to he	then subtrac 40h then s NEXT NEXT1 C		le. he hexadecimal value. to get the hexadecimal			

		MOV 52 MOV A	,#0FH 2H,A ,50H		1.	/LD			
		MOV 51	,#0FH 1H,A ,#0AH		1,	′ UD is s	tored in A	as well as in 5:	1H
		MUL AI ADD A,		// A =			(UD*oAH)	+ LD	
		ORG C MOV A MOV B DIV MOV 50 MOV A MOV B DIV MOV 51	ALP to convert hexadecimal to BCD. DRG 0000H IOV A,40H IOV B,#100D IV AB IOV 50H,A IOV 50H,A IOV A,#0F0H IOV B,#10D IV AB IOV 51H,A IOV 52,B						
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph								
8	Observation Table, Look-up Table,								
	Look-up Table, Output	INPUT		50H		42			
		OUTPUT		60H		οВ			
		2							
		2. INPUT	50	н		99			
		OUTPUT	50				00	00	63
			50	11		99	09	09	03
		3							
		INPUT		40H		FI	F		
		OUTPUT		50H		0	2	05	05
9	Sample								
10	Calculations Graphs, Outputs								
	Results & Analysis	Developed an	nd exe	cuted C		aram			
	Application Areas	Keyboard, Prir					ASCII).		
	Remarks								
	Faculty Signature								
	with Date								

Experiment 07 : Timers and Serial Communication

-	Experiment No.:	8	Marks	10	Date Planned	Co	Date onducted	
1	Title	Time	imers and Serial Communication					
17EEL57 Copyright ©2017. cAAS. All rights reserved.								
Page # 21 / 35								

2		Develop the program to generate time delay and serial communication using assembly language.								
3	Aim	Exercise on timers and serial communication.								
		Computer ,kiel software								
4	Equipment									
_	Required									
5		Calculations:								
	Principle, Concept	f=100khz								
		t=10*10 ⁶ s								
		1 pulse=5*10 ⁶ s								
		$n = 5^{10^6} = 4.61 = 5$								
		1.085*10 ⁶								
		initial value=65536 – n = 65531=FFFBH.								
6	Procedure,	1.ALP to generate a square wave of 100khz using timer0 in mod1.								
Ū	Program, Activity,									
	Algorithm, Pseudo									
	Code	AGAIN: MOV TLO,#0FBH								
	COUE									
		MOV THo,#oFFH								
		CPL Po.o								
		SETB TRO								
		HERE: JNB TFO,HERE								
		CLR TRO								
		CLR TF0								
		SJMP AGAIN								
	2.ALP to generate serial code using serial port and on-chip timer/counter.									
		ORG 0000H								
		MOV TMOD,#20H								
		MOV TH1,#-3								
		MOV SCON,50H								
		SETB TR1								
		UP: MOV A,#'S'								
		ACALL SEND								
		MOV A,#'K'								
		ACALL SEND								
		MOV A,#'I'								
		ACALL SEND								
		MOVA, #'T'								
		ACALL SEND								
		MOV A, #' '								
		SJMP UP								
		SEND: MOV SBUF,A								
		HERE: JNB TI,HERE								
		CLR TI								
		RET								
7	Block, Circuit,									
	Model Diagram,									
	Reaction Equation,									
~	Expected Graph									
8	Observation Table,									
	Look-up Table,	2.SKIT SKIT SKIT SKIT SKIT SKIT SKIT SKIT								
	Output	SKIT SKIT SKIT SKIT SKIT SKIT SKIT SKIT								
9	Sample									
9	Calculations									
	Calculations									
. ~	Graphs, Outputs									

11	Results & Analysis	
12	Application Areas	Use for generating precise time delays in many electronic equipment such as
		CPU, washing Machine and microwave oven. Long distance communication.
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 08 : Stepper Motor Interface

-	Experiment No.:	8	Marks	10	Date Planned	Date Conducted				
1	Title	Stepp	ber Motor Int	erface	1	· · · · ·				
2		board	evelop the program to interface stepper motor with 8051 using hardware oards							
3	Aim	Exerc	cise on stepp	er motor inte	erface with 80	051.				
	Equipment Required		omputer ,kiel software							
5	Principle, Concept	into o rotate appli relati is dir moto								
6	Procedure, Program, Activity, Algorithm, Pseudo Code	A C-r #incl void of void of while Po=0: delay Po=0: delay Po=0: delay Po=0: delay Po=0: delay Po=0: delay for (i	motor shafts rotation is directly related to the frequency of the input pulses and the length of rotation is directly related to the number of input pulses applied. A C-program to run the stepper motor in clockwise direction. #include <reg51.h> void delay(unsigned int); void main(){ while(1){ Po=0x99; delay(1); Po=0x33; delay(1); Po=0x66; delay(1); Po=0xCC; delay(1); Po=0xCC; delay(1); for (i = 0; i < 100; i++) for (j = 0; j < value; j++)</reg51.h>							
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	1								
8	Observation Table, Look-up Table, Output									
9	Sample Calculations									

10	Graphs, Outputs	
11	Results & Analysis	Developed and executed C program
12	Application Areas	Automation systems, image scanners, computer printers and disc drivers.
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 09 : DC Motor Interface

-	Experiment No.:	9	Marks	10	Date Planned		Date Conducted			
1	Title	DC M	lotor Interfac	e						
2	Course Outcomes	Deve	Develop the program to interface DC motor with 8051 using hardware boards.							
3	Aim		xercise on DC motor interface with 8051.							
	Equipment Required		computer ,kiel software							
5	Principle, Concept	an in printe there impo the D wise, accol modu The c be ap techr pulse to ch and \	DC motors are used in many applications like process control and automation in an industry, robotics, consumer electronics, office automation equipment like printers and scanners etc. One can consider the use of a DC motor wherever there is need to control the motion of an object. Speed control of the motor is important in the applications involving them. For example, in an audio system, the DC motor that drives the cassette should always run at a fixed speed. Like wise, there are applications where the speed of the DC motor has to change according to some defined conditions. The DC motor used in this interface module is a 12V, 4W motor that can be seen in many electronic equipments. The circuit to control the speed of the motor follows a general concept and can be applied to DC motors of higher capacity also. The pulse width modulation technique is used to vary the speed of the DC motor. The frequency of the pulses is 120Hz. Keeping the frequency constant, the width of the pulses is used to change the speed. When the pulse width is minimum, the speed is minimum and when the width is maximum, the speed is maximum (2400rpm). The ramp and pedestal technique is used to change the pulse width and thereby the							
6	Program, Activity, Algorithm, Pseudo Code	#incl woid of sbit n sbit n sbit e void n en_b do{ moto delay moto delay moto delay moto delay	delay(void); notor_pin_1=1 notor_pin_2= en_bit=P2^0; main(){ it=1; r_pin_1=1; // r_pin_1=1; r_pin_1=1; r_pin_2=1; // ('); r_pin_1=0; r_pin_1=0; r_pin_1=0; r_pin_2=0; // (');	P2^1; P2^1; P2^3; ANTICLOCK STOP	(WISE					

		void delay(){ int i,j; for (i = 0; i < 1000; i++){ for (j = 0; j < 1000; j++) ; }
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	
9	Sample Calculations	
	Graphs, Outputs	
		Developed and executed C program
		Elevators, air compressor, vaccum cleaner and hair driver etc
	Remarks	
14	Faculty Signature with Date	

Experiment 10 : LCD Interface

-	Experiment No.:	10	Marks	10	Date Planned		Date Conducted				
1	Title	LCD	CD Interface								
2	Course Outcomes		evelop the C program to interface LCD PANEL with 8051 using hardware bards.								
3	Aim	Exerc	cise on LCD i	nterface with	n 8051.						
4	Material / Equipment Required	Com	outer ,kiel so	ftware							
5	Theory, Formula, Principle, Concept										
6	Program, Activity, Algorithm, Pseudo Code	#incl #incl #defi #defi #defi #defi #defi xdata xdata xdata xdata xdata xdata ydata	ude <intel\8 ude <standa ne PORTA 0: ne PORTB 0: ne PORTC 0: ne CNTL 0x2 ne buff 0x19 unsigned ch unsigned ch unsigned ch unsigned ch unsigned ch unsigned ch unsigned ch</standa </intel\8 	051.h> rd.h> x2040 x2041 x2042 2043 6 nar *p8255_p nar *p8255_p nar *p8255_p nar *p8255_p nar *buff_ptr; nar temp1,ado nem. locn to RTA; RTC;	oorta ; oortb ; oortc ;						

		p8255_cntl = CNTL;
		*p8255_cntl = 0x98;// Ppa=i/p,Pb=o/p,PCu=i/p,PCl=o/p,
		*p8255_cntl = 0x03;// channel 1 selection Wr=1,PC1=1
		*p8255_cntl = 0x00;// start=0, PC0=0 delay(200);
		while(1)
		ſ
		p8255_porta = PORTA;
		p8255_portc = PORTC;
		p8255_portb = PORTB; p8255_cntl = CNTL;
		*p8255_cntl = 0x01;// start=1,PC0=1
		delay(200);
		*p8255_cntl = 0x00;// start=0, PC0=0// check for eoc,PC7=1
		do r
		ι temp1=*p8255_portc;
		temp1=temp1 & 0x80;
		} while(temp1 != 0x80);
		((delay(200)) ((after each read the ade data from DA
		//delay(200);// after eoc, read the adc data from PA adc_val = *p8255_porta;// display adc result on the data field
		*buff_ptr = adc_val;
		// This assembly program displays the adc_val on LCD screen
		ACC=*buff_ptr;
		asm a,#00h asm da a
		asm mov r6,a
		asm Icall 677dh
		asm mov r0,0ffh
		asm mov r1,0ffh
		asm lcall 6850h asm mov r0,0ffh
		asm mov r1,0ffh
		asm Icall 6850h
		delay(200);
		// end of while(1)
7	Block, Circuit,	J
	Model Diagram,	
	Reaction Equation,	
8	Expected Graph Observation Table,	
0	Look-up Table,	
	Output	
9	Sample	
	Calculations	
	Graphs, Outputs	Developed and executed C program
		Developed and executed C program Bank Token display, Bus stop display , digital watch, TV etc
	Remarks	Bank rokon display, bus stop display, digitat watch, rv ete
	Faculty Signature	
	with Date	

Experiment 11 : DAC Interface

- Experiment No.: 11 Marks 10 Date Date

					Planned	Conducted				
1	Title	DAC	Interface							
2			Develop the C program to interface DAC with 8051 to generate sine, square							
						lware boards.				
3	Aim	Exer	cise on DAC i	nterface with	n 8051.					
		Com	puter ,kiel so [.]	ftware						
	Equipment									
	Required									
	Theory, Formula,									
	Principle, Concept									
					rectangular	wave using DAC interface.				
	Program, Activity,	#INCl	ude <reg51.h></reg51.h>	>						
	Algorithm, Pseudo Code		main(){							
	Code	while								
			P2=0x0	00:						
			delay (100);							
			P2=0xFF;							
			delay (50);							
		}								
		}								
		unid	dolov (oborty)							
		voia	delay(char va unsigne							
				; i <value; i++)<="" th=""><th></th><th></th></value;>						
				, , , , , , , , , , , , , , , , , , , ,						
		}	,							
		A 80	51 C program	to generate	square wave	e using DAC interface.				
		void void w } void } A C-r #incl void	; program to g ude <reg51.h> main(){</reg51.h>	alue){ l int i; i < value; i++) enerate a rar	np waveform	n using DAC interface.				
			unsigned cha while(1){ for(i = 0; P2 = i; }	ar i; i <= 255; i++)						

		A C-program to generate a triangular waveform using DAC interface in 8051.
		<pre>#include<reg51.h> void main(){ unsigned char i; while(1){ for(i = 0; i < 255; i++) P2 = i; for(i = 255; i > 0; i) P2 = i; } }</reg51.h></pre>
		A program to generate sine wave using DAC interface in 8051.
		#include <reg51.h> void main(){</reg51.h>
		unsigned int i; unsigned char
		table[13]={128,192,238,255,238,192,128,64,17,0,17,64,128}; while(1){ for (i = 0; i < 13; i++) P0 = table[i]; }
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	
9	Sample Calculations	
10	Graphs, Outputs	
	· · ·	Developed and executed C program
		ECG Machines
	Remarks	
14	Faculty Signature with Date	

Experiment 12 : ADC Interface

-	Experiment No.:	12	Marks	10	Date		Date	
	-				Planned		Conducted	
1	Title	ADC	Interface					
2	Course Outcomes	Deve	lop the C p	rogram to ir	nterface ADC	C with 8051	for tempera	ture control
		using	using hardware board.					
3	Aim	Exerc	cise on ADC i	nterface with	ו 8051.			
4	Material /	Com	outer ,kiel so	ftware				
	Equipment							
	Required							
5	Theory, Formula,							

Principle, Concept	ן ו
6 Procedure,	#include <reg51xd2.h></reg51xd2.h>
Program, Activity	
Algorithm, Pseudo	
Code	unsigned char Low_adc,High_adc,relay;
	read_adc()
	[
	unsigned char status;
	P2_3 = 1; // Start conversion of ADC
	status = P1; //Read status of ADC
	while((status & 0x01) != 0x01)
	{ status = P1;
	P2_2 = 0; // Enable outputs
	$P2_0 = 0; // Activate B1 to B8 outputs$
	Low_adc = Po; // Read lower byte of ADC and place in Ro
	$P_{2_0} = 1; // Deactivate B1 to B8 outputs$
	P2_1 = 0; // Activate B9 to B12 and POL, over range outputs
	High_adc = P0; // Read higher byte of ADC
	High_adc = High_adc & 0x0F;
	P2_1 = 1; // deactivate B9 to B12 and POL, over range outputs
	$P2_2 = 1; // Disable outputs$
	P2_3 = 0; // Stop conversion of ADC
	1
	main() {
	float Temp,Vol,Res;
	unsigned char Temp1;
	unsigned char Temp2,Temp3; P0 = 0xFF ; // Make port 0 as input
	P2 = 0xFF ; // Make port 2 as high now the relay is on.
	P1_1 = 0 ; // switch OFF relay
	P2_3 = 0 ; // STOP conversion of ADC
	relay = 10;
	while(1) {
	read_adc(); //Read ADC
	Adc = High_adc;
	Adc <<= 8;
	Adc = Adc Low_adc; if((Adc > 0x656) && (relay != 0)) //IF greater than 0x0656 Switch OFF relay
	(
	ClrLcd();
	WriteString("RELAY OFF");
	P1_1 = 0;
	relay = 0;
	}
	else if ((Adc < 0x5b9) && (relay!= 1)) //IF less than 0x05B9 Switch ON relay
	ClrLcd();
	WriteString("RELAY ON"); P1_1 = 1 ; relay = 1;
	1_1 - 1, ICLAY - 1,
	Vol =-((Adc/10)*0.000488); //voltage before amplifier
	Res =((100*(1.8-Vol)-100*Vol)*100) /(100*Vol + 100*(1.8+Vol));// Resistance Value
	Res = Res - 100; Temp = Res $/ 0.384$;
	Temp1 = Temp;
	Temp2 = 0x30 + (Temp1 / 0x0A);
	Temp3 = 0x30 + (Temp1 % 0x0A);
	GotoXY(0,1);
	WriteString("Temperature ");

		WriteChar(Temp2); WriteChar(Temp3); WriteString("'C"); } }
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	
9	Sample Calculations	
10	Graphs, Outputs	
11		Developed and executed C program to interface ADC with 8051 for temperature control using hardware board.
12	Application Areas	Computer, mobile and in all data acquisition systems
13	Remarks	
14	Faculty Signature with Date	

Experiment 13 : Elevator Interface

-	Experiment No.:	13	Marks	10	Date Planned		Date Conducted	
1	Title	Eleva	ator Interface	<u>}</u>			1	
2	Course Outcomes	Deve	elop the C pro	ogram to inte	erface elevato	or with 8051	using hardwa	are board.
-	Aim		cise on eleva		with 8051.			
	Equipment Required		puter ,kiel so					
5		This interface has four keys, marked 0, 1, 2, and 3 representing the request buttons at the four floors. Pressing of key causes a corresponding Flip-Flop to be set. The outputs of the four Flip-flops can be read through port B (PBO, PBI, PB2 and PB3). Also, the status of these signals is reflected by a setoff 4 LEDs. The Flip-Flop can be rest (LEDs are cleared) through port A (PA54, PA5, PA6, and PA7). A column of 10 LEDs, representing the elevator can be controlled through Port A (PA0, PA1, PA2 and PA3). These port lines are fed to the inputs of the decoder 7442 whose outputs are used to control the on/off states of the						
6	Procedure, Program, Activity, Algorithm, Pseudo Code	void main unsig unsig Po = while P1 = ReqF ReqF ReqF	LEDs which simulate the motion of the elevator. #include <reg51xd2.h> void delay(unsigned int);</reg51xd2.h>					

		continue; //Go up to read again
		else if(CurFlr > ReqFlr) //If Current floor is > request floor
		{
		i = Flr[CurFlr] - Flr[ReqFlr]; //Get the no of floors to travel
		j = Flr[CurFlr]; for(;i>0;i) // Move the indicator down
		Po = oxofo j;
		j;
		delay(50000);
		}
		else // If Current floor is < request floor
		[i = Flr[ReqFlr] - Flr[CurFlr]; //Get the no of floors to travel
		j = Flr[CurFlr];
		for(;i>0;i) // Move the indicator Up
		{ Po = oxofo j;
		j++;' delay(50000);
		detay(50000),
]
		CurFlr = ReqFlr; // Update Current floor
		Po = FClr[CurFlr]; // Clear the indicator
		}
		}
		void delay(unsigned int x)
		for(;x>0;x);
]
	Block, Circuit,	
	Model Diagram,	
	Reaction Equation, Expected Graph	
	Expected Graph Observation Table,	
	Look-up Table,	
	Output	
9	Sample	
	Calculations	
	Graphs, Outputs	Developed and executed C program to interface elevator with 8051 using
		hardware board.
12	Application Areas	In all multistorage building
	Remarks	
14	Faculty Signature	
	with Date	

F. Content to Experiment Outcomes

1. TLPA Parameters

	Table 1: TLPA	– Exam	ple Cours	se			
Expt- #	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)	t Teachi				Instruction Methods for Learning	Measure
		ng Hours	Content		Learnin g F		Learning
A	B	С	D	E		G	Н
1	Data transfer – Program for block data movement, sorting, exchanging, finding largest element in an array.		L4	L4	Analyze	Experiment	Internal Assessment Test
	Arithmetic instructions: Addition, subtraction, multiplication and division. Square and cube operations for 16 bit numbers.	3	L4	L4	-	Experiment	Assessment Test
3	Counters	3	L4	L4	Analyze	Experiment	Internal Assessment Test
4	Boolean and logical instructions (bit manipulation).	3	L4	L4	Analyze	Experiment	Internal Assessment Test
5	Conditional call and return instructions.	3	L3	L3	Analyze	Experiment	Internal Assessment Test
	Code conversion programs – BCD to ASCII, ASCII to BCD, ASCII to decimal, Decimal to ASCII, Hexa decimal to and Decimal to hexa.	3	L4	L4	Analyze	Experiment	Internal Assessment Test
7	Programs to generate delay, Programs using serial port and on-chip timer/counters.		L4	L4	Analyze	Experiment	Internal Assessment Test
8	Stepper motor interface.	3	L4	L4	Analyze	Experiment	Internal Assessment Test
9	DC motor interface for direction and speed control using PWM.	3	L4	L4	Analyze	Experiment	Internal Assessment Test

10	Alphanumerical LCD panel interface.	3	L3	L3	Analyze	Experiment	Internal Assessment Test
11	Generate different waveforms: Sine, Square, Triangular, Ramp using DAC interface.	3	L4	L4	Analyze	Experiment	Internal Assessment Test
12	External ADC and Temperature control interface.	3	L4	L4	Analyze	Experiment	Internal Assessment Test
13	Elevator interface.	3	L4	L4	Analyze	Experiment	Internal Assessment Test

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

				ept to Outcome – Ex		
Expt - #	Learning or Outcome	Identified Concepts	Final Concept	Concept Justification	CO Components (1.Action Verb,	Course Outcome
	from study	from		(What all Learning	2.Knowledge,	
	of the	Content		Happened from the	3.Condition /	Student Should be able
	Content or			study of Content /	Methodology,	to
	Syllabus			Syllabus. A short	4.Benchmark)	
	Cyttabas			word for learning or	4.0011011110110	
				outcome)		
A	1	/	K		М	N
	Develop the	Data	Data	Develop the		Explore the various types of
	program for	Transfer	Transfer	program for moving	-software system,	system
	moving data	rialisiei	Transfer	data within memory	component or process	System
	within			locations in	-system models	
	memory			assembly language	-realistic constraints.	
	locations in			assertibly language		
	assembly					
	language					
	Develop the	Arithmatic	Arithmatic	Develop the	-Identify	Identify the development
	program for		Operations			requirements
		Operations			development,	requirements
	additin,subs traction,mult			additin, substruction,	-Requirements	
				multiplication,divisi		
	iplication,div			on, square and root	Processes.	
	ision, square			in assembly		
	and root in			language		
	assembly					
	language					
	Develop the	Counters	Counters		-Interpret	Interpret the usage of
	program for					suitable models
	UP/DOWN			UP/DOWN	requirements	
	Counters in				-appropriate design	
	assembly			assembly language		
	language					
	Develop the	Bit			-Compare	Compare various design
	program for	Manipulatio	Manipulatio	program for logical	- development	techniques for
	logical and	n Operatins	n Operatins	and boolean	-Design techniques,	development.
	boolean	-		operations in		-
	operations			assembly language		
	in assembly					
	language					
	Develop the	Subroutine	Subroutine	Develop the	-Illustrate	Illustrate the principles for
					- requirements and	
					Conviriant @2017 of AC	

			LADC	DRATORY PLAN - CAY 201	.9 20	
	program to call subroutine within main routine in assembly language			program to call subroutine within main routine in assembly language	-Validating	validating the requirements
6	Develop the	Conversion	Code Conversion	Develop the program for BCD to ASCII, ASCII to BCD, ASCII to decimal, Decimal to ASCII, Hexa decimal to and Decimal to hexa in assembly language	-Change requirement	Examine the change requirements for maintenance .
7	Develop the program to	Serial Communica tion	Serial	program to	-Analyze - project management -quality assurance procedures	Analyze the plans
8	Develop the program to interface stepper motor with 8051 using hardware boards.		Peripheral Interface	program to	-Identify - development process -Quality assurance procedures	Identify the quality assurance procedures
9	Develop the program to interface DC motor with 8051 using hardware boards.		Peripheral Interface	Develop the program to interface DC motor with 8051 using hardware boards.	-Understand	Understand the importance of agile project management
10	Develop the C program to interface LCD PANEL with 8051 using hardware boards.	Interface	Peripheral Interface	Develop the C program to interface LCD PANEL with 8051 using hardware boards.	-Explain, development -methods	Explain the method for Development .
11	Develop the C program to interface DAC with 8051 to generate sine, square,	Interface	Peripheral Interface	Develop the C program to interface DAC with 8051 to generate sine, square, triangular and ramp waveforms using		Understand the importance of agile project management

	triangular and ramp waveforms using hardware boards.			hardware boards.	
12	Develop the C program to interface ADC with 8051 for temperature control using hardware board.	•	Peripheral Interface	Develop the C program to interface ADC with 8051 for temperature control using hardware board.	Understand the importance of agile project management
13	Develop the C program to interface elevator with 8051 using hardware board.	Interface	Peripheral Interface	Develop the C program to interface elevator with 8051 using hardware board.	Understand the importance of agile project management